A REPORT ON FAULT AND FRACTURE ANALYSIS USING NEURAL NETWORK ASSISTED GEOMETRICAL ATTRIBUTES

A Research Project Under
GERMI Summer Internship Programme (2015)

By

Mohana Lakshmi Chirumamilla
3rd M.Sc. Tech. Geophysics
Department of Geophysics
Andhra University
Visakhapatnam

Kajal Mittal
4th Integrated M.Tech. Geological Technology
Department of Earth Sciences
IIT Roorkee
Uttarakhand

Under The Guidance of
Mr. P. H. Rao (Project Co-ordinator)
Mr. Santosh Dhubia, Mr. K. Ramachandran (Technical Guides)

Petroleum Research Wing
Gujarat Energy Research and Management Institute
Research, Innovation and Incubation Centre
Gandhinagar-382 007, Gujarat, India
Name of the Student : Mohana Lakshmi Chirumamilla and Kajal Mittal
Project Title : A Report on Fault and Fracture Analysis using Neural Network assisted Geometrical Attributes
Project Coordinator : Mr. P. H. Rao
Technical Guide : Mr. Santosh Dhubia and Mr. K. Ramachandran
Sponsored By : Gujarat Energy Research and Management Institute Research Innovation and Incubation Centre Gandhinagar- 328 007, Gujarat, India
ACKNOWLEDGEMENT

I express my deep sense of gratitude to Dr. T. Harinarayan, Director, Gujarat Energy Research and Management Institute, Gandhinagar, for giving me an opportunity to participate in Summer Internship Programme, 2015.

I would like to express my heartfelt thanks to Mr. P. H. Rao, Head, Data Interpretation Centre, GERMI for extending his knowledge, support and guidance throughout the entire period of internship work.

I would like to express my sincere thanks to Mr. Santosh Dhubia, Scientist E1, Petroleum Research Wing, GERMI for taking care of each and every aspect of work.

I would like to convey my thanks to Mr. K. Ramachandran, Geoscientist, Petroleum Research Wing, GERMI for his support and encouragement.

I would like to convey my deep sense of gratitude to dGB Earth Sciences, Norway for providing us the software.

I feel very happy to acknowledge my fellow colleagues with whom the entire period of work was immensely enjoyable.

I am also very thankful to Prof. P. Rama Rao, Head of Department, Department of Geophysics, Andhra University for allowing me to join the summer training programme at GERMI.
SUMMARY

Faults and fractures are the important components of structural information. The faults and fractures play an important role in creating areas of high porosity and permeability in reservoir rocks. Mapping these faults/fractures can give valuable information about fluid flow inside the reservoir. Seismic attributes often provide a quick way to visualize the trends of faults and fractures, which are not visible in seismic amplitude information. These set of information from different seismic attributes can be used to form fault geometry, and further it can be used to optimize well locations.

Neural networks are one of the most efficient ways in seismic object detection to recombine multiple input attributes into a single object-sensitive attribute. It is a good tool to enhance a geological interpretation of seismic data. Including specific spatial knowledge about the targeted object ANN allows us to separate objects of different geologic origin with similar attribute characteristics.

The main aim of this project was to generate optimum workflows for delineation of faults and fractures in the study area though multi attribute analysis. For this purpose first data conditioning was done to remove the noise and enhance the continuity of events. Faults and continuity were enhanced properly after applying DSMF and FEF on the given data. DSMF was used for further studies.

Secondly, different geometric and physical attributes were applied in detection of faults. Faults and fractures in the central part associated with the main fault were delineated properly after geometrical attribute analysis such as Polar Dip, Most Positive Curvature and Similarity. These attributes have clearly indicated the geometry of the fault and fracture.

Then ANN studies were done based on combination of individual seismic attributes using neural network system to create new attributes, which give the optimal view of the fault zones. With the help of the new produced fault probability attribute surrounding noises were suppressed and highlighting the faults. Application of supervised neural networks shows more convincible results than to individual attributes.
TABLE OF CONTENTS

Acknowledgement.. 3

Summary... 4

1. Introduction.. 6
2. Objective.. 6
3. Scope of Work.. 7
4. Methodology and Work Flow.. 7
5. Data Loading and Analysis... 8
 5.1. Data Used... 8
 5.2. Data Format.. 8
 5.3. Software Used... 9
 5.4. Data Loading... 10
 5.4.1. Survey setup... 10
 5.5. Data Import.. 14
6. Data Conditioning... 15
 6.1. Conditioning of Seismic Data.. 15
 6.2. Dip Steering... 16
 6.2.1. Create Steering Data.. 16
 6.3. Dip Steering Median Filter... 17
 6.3.1. Creating Dip Steered Median Filter.. 18
 6.4. Analysis of data conditioning workflows.. 19
 6.5. Fault Enhancement Filter... 20
7. Horizon Tracking.. 24
8. Seismic Attributes.. 25
 8.1. Geometrical Attributes... 26
 8.1.1. Similarity Attributes.. 26
 8.1.2. Dip Attributes... 29
 8.1.3. Curvature Attributes... 32
 8.2. Physical Attributes... 36
 8.2.1. Instantaneous Attributes... 36
9. Neural Networks.. 42
 9.1. Unsupervised Neural Network... 43
 9.2. Supervised Neural Network... 46
 9.2.1. Defining Attribute Set... 47
 9.2.2. Training and Viewing a Neural Network.. 49
10. RGB (Red-Green-Blue).. 55