Development of RMS Seismic attribute plug-in for OpendTect software using Graphics Processing Unit

A Research Project Under
GERMI Summer Internship Programme (2014)

By
Mr. Aggidi Vineel Raja

5 year Integrated M. Sc. Mathematics and Computing (3rd Year)

Student ID Number: GERMI/S-2014/78

Department of Mathematics
Indian Institute of Technology Kharagpur

Under The Guidance of

Petroleum Research Wing
Gujarat Energy Research and Management Institute
Research, Innovation and Incubation Center
Gandhinagar-382 007, Gujarat, India
May-July 2014
<table>
<thead>
<tr>
<th>Name of the Student</th>
<th>:</th>
<th>Aggidi Vineel Raja.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the Institute</td>
<td>:</td>
<td>Indian Institute of Technology Kharagpur.</td>
</tr>
<tr>
<td>Project Title</td>
<td>:</td>
<td>Development of RMS Seismic Attribute plug-in for OpendTect software using Graphics Processing Unit (GPU).</td>
</tr>
<tr>
<td>Project Coordinator</td>
<td>:</td>
<td>Mr. P.H Rao.</td>
</tr>
<tr>
<td>Technical Guide</td>
<td>:</td>
<td>Mr. Santosh Dhubia.</td>
</tr>
<tr>
<td>Sponsored By</td>
<td>:</td>
<td>Gujarat Energy Research and Management Institute Research Innovation and Incubation Center Gandhinagar- 328007 , Gujarat, India.</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I express my deep sense of gratitude to Dr. T. Harinarayan, Director, Gujarat Energy Research and Management Institute, Gandhinagar, for giving me an opportunity to participate in Summer Internship Programme, 2014.

I would like to express my heartfelt thanks to Mr. P.H. Rao, Head, Data Interpretation Centre, Germi for extending his knowledge, support and guidance throughout the entire period of the internship work.

I would like to express my sincere thanks to Mr. Santosh Dhubia, Scientist E1, Petroleum Research Wing, Germi for taking care of each and every aspect of the work.

I would like to convey my thanks to Mr. K. Ramachandran, Geoscientist, Petroleum Research Wing, Germi for his support and encouragement.

I would like to convey my deep sense of gratitude to dGB Earth Sciences, Norway for providing us the software.

I would like to thank Prof. Pawan Kumar of Department of Mathematics, IIT Kharagpur for his support in the institute and teaching me coding.

I feel very happy to acknowledge my fellow colleagues with whom the entire period of work was immensely enjoyable.
Table of Contents

Acknowledgements .. (3)

Abstract .. (5)

1 Introduction

1.1 Seismic Attributes .. (6)

1.2 Objective .. (6)

1.3 Scope ... (6)

1.4 Work flow ... (7)

1.5 Overview of Parallel Computation .. (7)

1.6 Background information on GPU .. (8)

1.7 OpendTect plug-in development environment ... (9)

2 OpendTect plug-in development

2.1 Ridging Attribute .. (10)

2.2 RMS Attribute ... (13)

2.3 RMSGPU Attribute & Integration of CUDA in OpendTect (17)

3.0 Benchmark Studies ... (17)

4.0 Conclusions .. (20)

5 Annexure .. (21)
Abstract

Seismic attributes analysis play a key role in unlocking hidden information from seismic amplitude data, and it has become the integral part seismic data interpretation work flows. The key challenge in seismic interpretation is to extract at most information from 3D seismic volumes in the form of seismic attributes in a time-efficient manner. But as amount of 3D seismic volumes is growing with the exploration in complex areas, the time used to calculate these attributes becomes a bottleneck for seismic data interpretation work flows, and thus affects the turnaround time of the interpretation project. The computation of seismic attributes are independent of each other and it's computation time depends on the size of the data-set. Hardware architectures like General Purpose Graphics Processing Units (GPGPU's), which are known for their unique ability to perform parallel calculations very efficiently, can be used for computation of these seismic attributes. Due to the advantage of parallel computation on GPGPU's, many seismic attribute can be transfered to take the advantage of this processor, and to improve software performance. OpendTect, which is an open source seismic data interpretation software, uses CPU's for computation of seismic attributes. Thus, there is a large scope of using GPGPU's for computation of seismic attributes on this software, where efficient computation and data transfer can reduce the computation time significantly. A plug-in for computation of Root Mean Square (RMS) of seismic amplitude was developed in this study to understand the plug-in development environment of OpendTect, and to test the efficiency of GPGPU platform for computation of seismic attributes. Based on the developed plug-in and benchmark studies, conclusions and recommendation are provided for use of GPGPU's platform for seismic attribute computation in time-efficient manner.